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Introducing a metal ion into a macrocyclic system can be
performed following two major pathways. The first method involves
the reaction of the metal ion with a macrocycle (such as crown
ethers, porphirins, etct)whereas the second method creates the
macrocycle around the metal center during the reaétidetinide
metals in macrocyclic complexes are of great interest due to their
large ionic size and high positive charge. Since high coordination
numbers characterize their coordination chemistry, they may serve
as templates to the construction of macrocyclic organic moleéules.
For example, uranyl chloride condenses phthalonitrile to form a
20-membered macrocycteCrown ethers are known to bind the
actinides, but in contrast to lanthanide complexemly seven
actinide complexes where the metal is encapsulated within the
macrocycle are knowhIn most cases, the macrocycle occupies
the second (outer) coordination sphere and is not directly bonded
to the metal.®

In this contribution we report the synthesis and crystal structure
of 15-membered, hexaoxo, trianionic ligation systems for organo-
actinides, built from catechol and catecholborate units around the
actinide center8l® with an overall structure of a hexagonal
bipyramid geometry!
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The synthesis of complex(2a= Th, 2b = U), shown in eq 1,
was accomplished by reacting the complex (GAHMe; (Cp* =
pentamethylcyclopentadienyl, Ax Th = 1a, U = 1b) with an
excess of catecholborane (HBcat) that contains 5% dimethyl sulfide
(DMS)2 in benzene at room temperature for 24 h. The first step
of the reaction involves the reaction of complewith 2 equiv of
HBcat to form Me-Bcat. This product was confirmed %y NMR
and GC/MS measurements of the crude reaction mixure.

Complex2a crystallizes in the triclinic space-group1 with a
unit cell of dimensionsa = 14.517(2) A,b = 14.562(2) A.c =
16.604(3) Ao = 68.92(7}, B = 82.40(7Y, y = 87.83(9 (Figure
1). The thorium atom is positioned slightly above the center of a
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Figure 1. Ellipsoid representation of the molecular structure of complex
2a. Apical Cp* and DMS ligands were removed for clarity.

concave hexagonal plane described by the six binding oxygen
atoms. The deviation of the thorium atom from this plane is 0.5754
A. The average ThO bond length (2.457 A) is slightly higher
than that of the tetrakis(catecholato)thorium complexes (2.419 A).
A Cp* ligand rests in the apical position with an average-Th
C(Cp*) bond length of 2.766 A (similar to the average-T®&(Cp*)
bond length in complesa, 2.780 A). Each two catechol units are
bridged by a catecholborate fragment disposed perpendicularly to
the macrocycle and slightly bent away from the Cp* ligand. The
concave shape of the macrocycle is a result of steric interaction
between the borate fragments and the Cp* ligand. The DMS ligand,
also positioned in an apical position, shows a-Ehbond length
(3.0866 A) longer than that in all known complexes having a$h
single bond:®> Complex2b is isolobal and isostructural to complex
2aand crystallizes in the monoclinic space grde@il/h with unit
cell dimensionsa = 17.383(3) Ab = 16.774(4) A.c = 18.284(4)
A, p =107.86(73. The average B0, U-C(Cp*), and U-S bond
lengths are 2.435, 2.705 and 2.9943 A, respectively. The longer
bonds in complexXa as compared to those bonds in compfix
indicate a larger ionic character of the U(IV) compléx.
Replacement of the DMS ligand by THF was accomplished by
heating a THF solution of compleéXato 70°C for 12 h followed
by crystallization” Complex2c crystallizes in the monoclinic space
group P21/c with unit cell dimensionsa = 9.770(2) A, b =
21.172(3) A,c = 24.294(4) A,p = 97.14(7). The complex is
isostructural to complega. The Th-O(THF) bond length (2.583
A) is shorter than the ThS bond of compleXa but longer than
the average ThO(macrocycle) bond length (2.449 A). An attempt
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cp*
Figure 2. Crystal structure and schematic view of comp8&x

to remove the Cp* ligand or eject the metal ion from the macrocycle
by adding an equimolar amount of water resulted in the decomposi-
tion of the complex to yield catechol and other unidentified
byproducts. In addition, reaction of compl@a with equimolar
amounts of complesb did not afford the transmetalation product.
Replacement of the DMS ligand was performed by reacting
complexla containing 4.5% of LiOH with an excess of HBcat to
form the dimeric crystalline produ@ Complex3 crystallizes in
the monoclinic space group21/i with unit cell dimensionsa =
17.192(5) Ab = 16.451(5) Ac = 18.700(6) A5 = 111.16(13).
X-ray diffraction (Figure 2) revealed an interesting structure, where
two macrocycles are connected with two LIOH molecules. Each
OH group is bonded to a thorium atom in the apical position, while
the Li atom bonds, in addition to the two OH groups, two oxygens
of two borate fragments. The Cp* ring centeroid-T@H angle is
almost linear (177.52(13), and the two Cp* ligands are essentially
parallel (an angle of 179°7between the two ring’s planes). The

In conclusion, we present the synthesis and crystal structure of
the first organoactinides (Th(IV) and U(IV)) complexes bearing
the new planar hexaoxo, trianionic, 15-membered macrocyclic
ligation systems.
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